• English
    • العربية
  • العربية 
    • English
    • العربية
  • دخول
عرض المادة 
  •   المستودع الرقمي لجامعة الزاوية
  • Graduate Studies || الدراسات العليا
  • Master Theses || رسائل الماجستير
  • عرض المادة
  •   المستودع الرقمي لجامعة الزاوية
  • Graduate Studies || الدراسات العليا
  • Master Theses || رسائل الماجستير
  • عرض المادة
JavaScript is disabled for your browser. Some features of this site may not work without it.

Brain tumor detection by multi focus image fusion based on wavelet transformv

Thumbnail
عرض/افتح
االرساله بعد تعديل الاخير .pdf (2.146Mb)
التاريخ
2020
المؤلف
Abdul Latif, Munira Habib
واصفات البيانات
عرض سجل المادة الكامل
الخلاصة
Brain tumor or cancer is one of the most dangerous types of cancer because it affects the main nervous system of the human body, and the detection of brain tumors is a complicated and sensitive task that implied the experience of the classifier. This thesis has suggested method of "Brain tumor detection by multi focus image fusion based on wavelet transform" .It combined Magnetic Resonance Imaging( MRI) and Computed Tomography (CT) image in order to enhance the tumor detection. The reason to incorporate multi -focus image is to help clinicians obtain support in diagnosing. The algorithm based on seven wavelets has been implemented, bior2.2, coif2, db2, dmey, rbio2.2, sym4 and haar respectively to get a variety of results. This algorithm is effectively used the information provided by the CT image and MRI images to obtain a resultant fused image which increases the efficiency of tumor detection by using MATLAB. The effectiveness of the algorithm was evaluated by changing the wavelet fusion parameters such as the number of decompositions and image quality; The scale that was used to measure its image quality is to calculate the signal-to-noise ratio (PSNR) and the calculation of the factor of randomness (Factor Entropy). It has been observed that the haar waves give the best results with the calculation of the signal to noise ratio (PSNR) and the dmay waves give the best results with the calculation of the factor of randomness (Factor Entropy) to detect the tumor. In the image segmentation has been applied to discover the tumor portion and indicate the tumor growth area. Finally results will be presented and discussed .
المكان (URI)
http://dspace.zu.edu.ly/xmlui/handle/1/1042
حاويات
  • Master Theses || رسائل الماجستير [316]

University of Zawia copyright © 2020 
اتصل بنا | ارسال ملاحظة
Theme by 
Atmire NV
 

 

استعرض

جميع محتويات المستودعالمجتمعات & الحاوياتحسب تاريخ النشرالمؤلفونالعناوينالمواضيعهذه الحاويةحسب تاريخ النشرالمؤلفونالعناوينالمواضيع

حسابي

دخول تسجيل

University of Zawia copyright © 2020 
اتصل بنا | ارسال ملاحظة
Theme by 
Atmire NV