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ABSTRACT

In this paper, we combine the homotopy perturbati@thod, Sumudu transform and He’s polynomials
to obtain the approximate /exact solution of soradig@ differential equations of fractional orddihe
fractional derivative is considered in Caputo sei@&mme illustrate examples are presented to shew th
accuracy and easy implementation of this method.
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On The Solution Of Partial Differential Equations Of Fractional Order

1. INTRODUCTION

The traditional partial differential equations mawpt be adequate for describing the underlying
phenomena for example, transport phenomena in @ngystems such as random fractal structures,
which exhibit many anomalous features that arelitqtisely different from the standard behavior

characteristics of regular systems[5].In recentye&ansiderable interest in fractional partial eliéntial
equations(FDEs) has been simulated by applicatibas it finds in numerical analysis and in the
different areas of physical chemical processandneegng including fractal phenomena [3,6,16,17].
There is a growing need to find the solution ofsthequations. However, most of these equation are
difficult or impossible to solve analytically. Ascansequence, an effective and easy-to-use nurhanda
approximate methods are needed. Over the last decsel/eral analytical/approximate methods have
been developed to solve FPDEs, some examples o€ theethods are homotopy analysis method
[11,20],Adomain decomposition method [8,9],Laplatansform method [2,23],Variational iteration
method [10],Homotopy perturbation method [12,21]unfBidu transform method [1,4,13,14].
Furtherhomotopy perturbation methods are combindiaaplace transform to solvemanyproblemssuch
as one dimensionalnonhomogeneous partial diffedecuationswith a variable coefficien2q], and
itcombinedwithSumudutransformfor getting the anajtsolution of the fractional Black-Scholes optio
pricingequation[27].

This paper extend Sumudu transform coupled to hopyoperturbation method to derivation of exact
solution of FPDEs where the method based on cornégries.

The paper is organized as follows: In section Zyive some definition in fractional calculus. In 8en 3

we present the basic idea of homotopy perturbatiwihod. In section4 we extend the homotopy
perturbation Sumudu transform method (HPSTM) factional partial differential equations. In sect®bn
we apply (HPSTM) to solve various types of FPDEgally, In section 6 we summarize our work in
conclusion

2. PRELIMINARIES AND NOTATIONS

Definition 2.1:[15]
A real function f (x), x > Ois said to be in spadg,, u € R if there exists a real numbgr= u,such that
f(x) = xPf(x) wheref; (x) € C(0,) and it is said to be in the spacgif and only if f* € C;,n € N
Definition 2.2:[18]
The Riemann-Liouville fractional integoperator of ordex > 0Ois defined as:

1 * f()dt
U= ra L -
Definition 2.3:[19]

The Caputo fractional derivative of adtiaon f(t) of orderais defined as:
u 1 * f™(t)dt

th(t)zf‘(a)_[a @ e n—-1<a<sn (2.2)
Definition 2.4:[22]
Consider a se# defined as

x>aa>0) (2.1)

Itl
A= {f(t):EI M,t,,7, > 0,|f(t)| < Me% if t € (=1)) x [0, oo)}. (2.3)

For all realt > 0, the Sumudu transform of a functigit) € A, denoted bys[f (¢t)] = F(u), is defined
as
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[ee)

SF®Iw =Fu) = f e~ fut)dt, u€ (—74,7,) (2.4)

0
The functionf(t) in equation (1) is called the inverse Sumudu fans of F(u) and is denoted by

f(t) = STHFw)]
Proposition 2.1: Let M(u), N(u) be Sumudu of (t), andg(t), respectively, then the Sumudu of
convolution

fag= ] F@) gt —1) dr 25)
0

is given by,

SI(f * 9)(®)] = uM(u)N(u)(2.6)

In particular, ifg(t) = 1, then the Sumudu of anti-derivative of the functibrf (t), is
t

SIF+DO] = S[ff(f) g(t—1)dr]=uMu) (2.7)

Theorem 2.1: [7]
Let f(t) € A, letF,, denote the Sumudu transform of derivatif®&(t)of f(t), then form > 1
m-—1
F(u) — Z u"f"], m > 1. (2.8)
k=0
The Sumudu of fractional derivative can be obtaigd generalization theorenj2.1) and using
proposition(2.1).
Theorem 2.2: [30]
Letm €N, m—1<a<m, andF(u) is the Sumudu of a functiofi(t), then the Sumudgf (u), of
Caputo fractional derivative of (t) is given by

HOESY uk-lfk-l(t)] (2.9)
t=0

k=1

Ep =[F"@®);u]l =u™

Fr ) = S[DFf(O)] =u™®

For the properties of Sumudu transform and itsvaésies see [28,29 ].

3. HOMOTOPY PERTURBATION METHOD
The homotopy perturbation method was first propobgd[12] is applied to various problems. To
illustrate the basic idea of this method, we coaisitie following nonlinear differential equation

AW —f(ry=0re Q (3.1)
with boundary conditions

du
B (u, %) =g(x,y,t), TreT (3.2)
Subject to initial condition:
u®(0) = ¢, (3.3)

whered is a general differential operatd,is boundary operatof,(r) is a known analytic functior; is
the boundary of domaif.
In general, the operatdrcan be divided into two parts andN whereL is a linear operator whilév
is the nonlinear operator. Eq.(3.1) therefore camvhitten as follows:
Lw)+nuw)—f(r)=0
By thehomotopy technique [24,25] we construcbmbtopy v(r,p):Q x [0,1] - R which satisfies
H(,p) = (1 =p)[L(v) — L(up)] + p[A(w) — f(N] =0 p€[01]r e (3.4)
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Or

H(v,p) = L(v) — L(up) + pL(uo) + p[N (v) = f(r)] =0 (3.5)

wherep € [0,1] is an embedding parametey, is an initial approximation of Eq (3.1) which &digés the

boundary conditions.

From (3.4) and (3.5) we have

Hw,0) =L(v) — L(uy) =0 (3.6)

Hwv,1)=Aw)—f(r) =0 (3.7)
The changing in the process @f from zero to unity is just that o (r,p) from wu,(r) to u(r).In

topology this is called deformation addv) — L(u,), andA(v) — f(r) are called homotopic.

Now, assume that the solution of equation (3.4) (@) can be expressed as

v =vy+ pvy + p2v, + oo

The approximate solution of Eg. (3.1) can be ola@diby settingp = 1

u(x,t):lirquy0+v1+v2+ ...... = zvn
p—
4. THE IDEA OF HOMOTOPY PERTURBATION COUPLED WITH SUMUDU TRANSFORM

METHOD

To illustrate of the basic idea of this method, se@sider the following nonlinear fractional diffet&l
equation

Dfu(x,t) + Lix]u(x, t) + N[x]u(x,t) = q(x,t), m—1<a<m 4.1)
with initial conditions

d*u(x, 0)

S = (), k=123, m-1 (4.2)

where{ = % is a fractional Caputo derivative of functian(x, t), L is the linear differential operator,
N is the nonlinear differential operator apd,t) is the source term.

Now, we applying Sumudu transform on both sidegidr)

S[Dfu(x,t)] + S[L[x]u(x, t) + N[x]u(x,t)] = S[q(x, t)]

using the differential property of Sumudu transfawe have

Slu(x,t)] = f(x) —u* [S[L[x]u(x, t) + N[x]Ju(x, t)]] = u“[S[q(x, t)]] (4.2)
Operating with Sumudu invers on both sideq 412)

u(x, ) = Q(x, t) — STHu*[S[Lx]u(x, t) + N[x]u(x, D]} (4.3)
where(x, t) = [Z wk 2 u(xo)] +S~Hu*[S[q(x t)]]}represents the termarisingfrom the source term
and the prescribed initial conditions.

Now applying the classical HPM where the solutiam de expressed as a power serieg as given
below
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u(x, t) = Z p™u, (x,t) (4.4)
n=0

where the homotopy parameteis considered as a small paraméiee [0,1]).

We can decomposed the nonlinear term as

Nu(x,t) = Z p"H,(u) (4.5)
n=0
wherdd,, are He’s polynomials ofug, uq, uy, -+ -+ u,, and it can be calculated by the following formula

By substituting Eq(4.4)and4.5) in (4.3) and using HPM we get

Zp U, (x,t) = Q(x, £) + p(=SHu?[S[L[x]u(x, t) + N[x]Ju(x, )1]}).

n=1

This is the coupling of Sumudu transform and hmpy perturbation method using H’s polynomials.
By equating the coefficient of corresponding powkrm on both sides, the following approximations are
obtained as

p°:ug (x,t) = Q(x, 1)
ptiug (x, £) = —(SHu[S[Lx]uo (x, £) + Ho(w)1]})
priuy(x, ) = —(S™Hu[S[LIx]uy (x, £) + HyW]]})

p3ius(x, ) = —(S™Hu*[S[LIx]uz (x, t) + H,(W]]})

Proceeding in the same manner,the rest of the coempsu,, (x, t)can be completely obtained, and the
series solution is thus entirely determined. Finayapproximate the solution(x, t)by truncated series

N
u(x,t) = Allim Z u, (x,t)
n=0

5. APPLICATION
In this section, we discuss the implementatiorhefgroposed method

Example 5.1: For our first example we consider the one dimeraidinear inhomogeneous fractional
wave equation
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1-a

msinx +tcosx, O0<a<l t>0 (5.1)

Dfu(x, t) + u,(x, t) =

subject to the initial condition

u(x,0) =0 (5.2)
The exact solution for special case= 1is given by

u(x,t) = tsinx

Firstly, applying Sumudu transform on both sided(bfl) subject to initial conditior§5.2), we have

Slu(x, t)] = u(x,0) + u®

S [% sinx + tcos x” — u%[S(uy(x, )] (5.3)

Operating the inverse Sumudu transform on bottssités.3), we have

u(x,t) =u(x,0)+S51 {u“ [S [% sinx + tcos x”} — S™Hu S (u (x, )]} (5.4)

Now, applying homotopy perturbation method

]} — (S Hu[S(uny (. )]})  (5.5)

; p"u, (x,t) = u(x,0)+S? {u“ [S l% sinx + tcosx

Equating the corresponding power of on both sid€S.5), we have
tl—a

p%uy (x,t) = u(x,0) + S71 {u“ [S Imsinx + t cos x”}

pliuy(x, t) = —(S_l{u“[S(UOx(x' t))]})
p2iu,(x, t) = _(5—1{u“[5(u1x(x, t))]})
p3:us(x, t) = _(5—1{u“[5(u3x(x, t))]})

Finally, we get

Uy (x,t) = 0+ S Hu*[ul"*sinx + ucosx]}

pa+i
=tsinx +mcosx
ta+1
u(x,t) = — (S‘l {u“ lS <t cosx — msinx)l})
ta+1 t2a+1
= —mcosx +msinx
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) ta+1 . t2a+1
u,(x,t) = — (S {u lS <m51nx + m cos x>l}>

t2a+1 t30_'+1
= —msinx - mcosx
usz(x,t) = — (S‘l {u“ lS <—£cosx - isin x)l})
T'2a + 2) I'(Ba +2)
—t3a+l pha+l
= mcosx + msinx
a+1 pa+l p2a+1
u(x,t) = tsinx +mcosx — mcosx +msinx
t2a+1 t3a+1 t30_'+1 t40_'+1
—msinx —mcosx + mcosx + msinx

For special case = 1 we get
u(x,t) =tsinx
which is the exact solution for given problg¢fl) for a = 1.

Example 5.2: We consider the following one dimensional reacBamgers equation:

2—«a
Dfu(x, t) + u(x,t) — Uy, (x, t) = m +2x—2, 0<a<l1 t>0 (5.6)
subject to the initial condition
u(x,0) = x? (5.7)

The exact solution for special case= 1is given by
u(x, t) = x? + t2

Firstly, applying Sumudu transform on both sided(bf6) subject to initial conditior§5.7), we have

Slu(x, )] = u(x,0) — u“[S(ux(x, t) — Uy (x, t))] + u®

S—th_a 2 2 5.8
lF(3—a)+ X — l (5.8)

Operating the inverse Sumudu transform on bothssité.8), we have

u(x,t)zu(x,0)+5‘1{u“ G _a

i || R (A COX SO ROt BT

Now, applying homotopy perturbation method
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}

_p(S_l{ua [S(unx (%, £) = Upex (, t))]}) (5.10)

Equating the corresponding power of on both sid€5.i10), we have

[ee)

2t2—0(
Z pnun (x, t) = u(x, O) + 571 [u“ [S [m + 2x — 2]

n=0

p%ug (x,t) = u(x,0) + 571 {u“ [5 [% + 2x — 2”}

prius(x,t) = —(STHuY[S (uox (%, ) — ugxx (x, D)]})
pruy(x,t) = —(S‘l{u“[S(ulx(x, £) — Uy (X, t))]})

p3ius(x, £) = —(STHu[S(uzr (x, £) — Uger (%, 1))]})

Finally, we get

u (x, 1) = x> + t2 + (2x — Z)F(at—il)
w0 =~ (57 s (- 24 1))

te 2t%
MNa+1) T(a+1)

w0 == (57 s () )

=—2x —2)

%
CT(a+1)
us(x,t) = = (S Hu[S(0)]})
=0
u,(x,t) =0
t* t 2t% 2t%
ulx,t) =x2+t2+ (2x—2) (2x —2) +0+-+0

Fla+1) et T@+rD T@+D
u(x, t) = x? + t2
which is the exact solution for given problé€fm6) for a = 1.

Example 5.3:Consider the following fourth-order fractional sitgr partial differential equation

X
Dfu(x, t) + (m— 1)ty (6, 8) =0, 0<@<2,0<x<1, >0 (5.11)
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Subject to the initial conditions

u(x,0) =x—sinx, 0<x<1
{ut(x, 0)=—(x—sinx), 0<x<1 (5.12)
And boundary conditions
u(0,t) =0, u(1,t) =e t(1—-sinl), t>0
—t (5.13)
Uy (0,8) =0, Uy (1,t) = e Fsinl t>1

The exact solution for special case= 2is given by

u(x,t) = (x —sinx et

Firstly, applying Sumudu transform on both sided(bfl1) subject to initial conditior5.12), we have

S[uCx, )] = u(x, 0) + 1 (x, 0) — u® [5 ((Sir’fx ~ 1) tpra t)>l (5.14)

Operating the inverse Sumudu transform on bothssités.14), we have

u(x, t) =ulx,0) + u(x,0)—51 {u“ [S <( ad } (5.15)

sin x

- 1) uxxxx(x’ t))

Now, applying homotopy perturbation method
X
Z pMu, (x,t) = u(x, t) + u(x,0) —p <5—1 {uvf lS <(sinx — 1) U sexncre (X t)>l}> (5.16)
n=0

Equating the corresponding power of on both sid€S.i16), we have

p%ug (x, ) = u(x,0) + u.(x,0)

pliu (x,t) = — (S‘l {u“ _S <(sir)16x - 1) Uorrre (X, t)>_ })
pru,(x,t) = — <S‘1 {u“ _S <(sir)16x - 1) U (X t)>_}>

Finally, we get
Uy (x,t) = (x —sinx) — (x — sinx)t

u;(x, t) = = (S Hu?[S(—(x — sinx) — (x — sinx)t)]})
a to{+1

CT A CTY)

S R )

[316}
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2a t2a+1
= (x - Sll’lX)m— (x - SIHX)m
ta ta’+1 t20{ t2a+1
_ - 1—t+ — + — +
u(x,t) = (x —sinx) [ Ta+1) T(a+2) TRa+1) TRa+2) ]
+ .........
For special case = 2 we get
3ttt > (—0)"

u(x,t) = (x — sinx) [1 —t+———+———+ --------- u(x,t) = (x—sinx)z( )
31 4! 5l n!

n=0

= (x —sinx)e”¢

which is the exact solution for given problg¢f11) for a = 2.

Example 5.4:Consider the following fourth-order fractional sigr partial differential equation

4

X 1
>uxxxx(xt)—0 0<ac<?2 §<x<1,t>0 (5.17)

1
Dfu(x, t)+( 120

Subject to the initial conditions

1
u(x,0) =0, E<x< 1
: (5.18)

X
ut(x,O)—1+m, 0<x<l1

and boundary conditions

u(1/2,t) =0, u(l,t) =et(1—-sinl), t>0

11 1 5.19
Uy, (1/2,1) = 6(5)3 sint, u,(1,t) = gsint t>0 (519)

The exact solution for special case= 2is given by

5
u(x, t) = (1 + m) sint

Firstly, applying Sumudu transform on both sided(bf17) subject to initial conditior§5.18), we have

Slu(x, t)] = u(x,0) + us(x,0) —u® [5 <(l + 1x240> Useraer (X, t))] (5.20)

Operating the inverse Sumudu transform on botlssit€l 7), we have

u(x, t) = u(x,0) + u(x,0) — 571 {ua [S <(x 1x240> Uneracre (X, t))]} (5.21)

Now, applying homotopy perturbation method
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Z pnun (x, t) = u(x: 0) + u; (x: 0) -p (S_l {ua [S <(l + 1x240> unxxxx(x t))]}) (522)
n=0

Equating the corresponding power of on both sid€§.22), we have

p%ug (x, ) =u(x,0) + u.(x,0)

1 4
pl: ul(x' t) = - <S_1 {uo{ [S << lxzo> quxxx(x ))]}) Si:lcx -1
pru,(x,t) = — (5“1 {utx [S <<l 1);4()) U (X, t))]})

Finally, we get

x5
uy (x,t) = (1 + m)

wisr==(sfe (2 22))])

x° te
- <1 + 120> T(a+1)

uZ(X,t)=_< { “ 120 r(a+1> ”D

x t20:+1
=1+
< 120) I2a +2)

xS ta+1 t20{+1
B =(1+=—][t- + s
uxt) < 120)[ T(a+2) T(a+2) l

n tka’+1
u(x,t) = Z
T 120 T(ka + 2)
k=0
For special case = 2 we get
u(x,t)=(1+m>lt_§+§+ ......... l
() =(1+ )i t
ulx,t) = 120 sin
1 ]
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which is the exact solution for given probl€f19) for a = 2.

6.CONCLUSION:

In present paper, (HPSTM) for finding exact solns@f some fractional partial differential equasdyy
employing integral transform coupled to homotopytydation method is proposed. The coupling is
based on Caputo fractional derivative definitiodegoowing to its flexibility. On the same side,eth
method is applied to some test examples yieldiragiesolutions. Thus the presented method can lze use
in solving various fractional models as convergaartes with easily computable components.
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